Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Chemosphere ; 346: 140535, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37923018

RESUMO

The worldwide and intensive use of phytosanitary compounds results in environmental and food contamination by chemical residues. Human exposure to multiple pesticide residues is a major health issue. Considering that the liver is not only the main organ for metabolizing pesticides but also a major target of toxicities induced by xenobiotics, we studied the effects of a mixture of 7 pesticides (chlorpyrifos-ethyl, dimethoate, diazinon, iprodione, imazalil, maneb, mancozeb) often detected in food samples. Effects of the mixture was investigated using metabolically competent HepaRG cells and human hepatocytes in primary culture. We report the strong cytotoxicity of the pesticide mixture towards hepatocytes-like HepaRG cells and human hepatocytes upon acute and chronic exposures at low concentrations extrapolated from the Acceptable Daily Intake (ADI) of each compound. Unexpectedly, we demonstrated that the manganese (Mn)-containing dithiocarbamates (DTCs) maneb and mancozeb were solely responsible for the cytotoxicity induced by the mixture. The mechanism of cell death involved the induction of oxidative stress, which led to cell death by intrinsic apoptosis involving caspases 3 and 9. Importantly, this cytotoxic effect was found only in cells metabolizing these pesticides. Herein, we unveil a novel mechanism of toxicity of the Mn-containing DTCs maneb and mancozeb through their metabolization in hepatocytes generating the main metabolite ethylene thiourea (ETU) and the release of Mn leading to intracellular Mn overload and depletion in zinc (Zn). Alteration of the Mn and Zn homeostasis provokes the oxidative stress and the induction of apoptosis, which can be prevented by Zn supplementation. Our data demonstrate the hepatotoxicity of Mn-containing fungicides at very low doses and unveil their adverse effect in disrupting Mn and Zn homeostasis and triggering oxidative stress in human hepatocytes.


Assuntos
Fungicidas Industriais , Maneb , Praguicidas , Zineb , Humanos , Maneb/toxicidade , Manganês/toxicidade , Manganês/metabolismo , Praguicidas/toxicidade , Zineb/toxicidade , Fungicidas Industriais/toxicidade , Fungicidas Industriais/análise , Apoptose , Estresse Oxidativo , Zinco/metabolismo , Hepatócitos/metabolismo , Etilenos , Homeostase
2.
J Neuroinflammation ; 20(1): 42, 2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36804009

RESUMO

INTRODUCTION: The mechanisms of cognitive impairments in Parkinson's disease (PD) remain unknown. Accumulating evidence revealed that brain neuroinflammatory response mediated by microglial cells contributes to cognitive deficits in neuropathological conditions and macrophage antigen complex-1 (Mac1) is a key factor in controlling microglial activation. OBJECTIVES: To explore whether Mac1-mediated microglial activation participates in cognitive dysfunction in PD using paraquat and maneb-generated mouse PD model. METHODS: Cognitive performance was measured in wild type and Mac1-/- mice using Morris water maze test. The role and mechanisms of NADPH oxidase (NOX)-NLRP3 inflammasome axis in Mac1-mediated microglial dysfunction, neuronal damage, synaptic degeneration and phosphorylation (Ser129) of α-synuclein were explored by immunohistochemistry, Western blot and RT-PCR. RESULTS: Genetic deletion of Mac1 significantly ameliorated learning and memory impairments, neuronal damage, synaptic loss and α-synuclein phosphorylation (Ser129) caused by paraquat and maneb in mice. Subsequently, blocking Mac1 activation was found to mitigate paraquat and maneb-elicited microglial NLRP3 inflammasome activation in both in vivo and in vitro. Interestingly, stimulating activation of NOX by phorbol myristate acetate abolished the inhibitory effects of Mac1 blocking peptide RGD on paraquat and maneb-provoked NLRP3 inflammasome activation, indicating a key role of NOX in Mac1-mediated NLRP3 inflammasome activation. Furthermore, NOX1 and NOX2, two members of NOX family, and downstream PAK1 and MAPK pathways were recognized to be essential for NOX to regulate NLRP3 inflammasome activation. Finally, a NLRP3 inflammasome inhibitor glybenclamide abrogated microglial M1 activation, neurodegeneration and phosphorylation (Ser129) of α-synuclein elicited by paraquat and maneb, which were accompanied by improved cognitive capacity in mice. CONCLUSIONS: Mac1 was involved in cognitive dysfunction in a mouse PD model through NOX-NLRP3 inflammasome axis-dependent microglial activation, providing a novel mechanistic basis of cognitive decline in PD.


Assuntos
Maneb , Paraquat , Doença de Parkinson , Animais , Camundongos , alfa-Sinucleína/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Inflamassomos/metabolismo , Integrinas/metabolismo , Macrófagos/metabolismo , Maneb/toxicidade , Transtornos da Memória/metabolismo , Microglia/metabolismo , NADPH Oxidases/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Paraquat/toxicidade , Doença de Parkinson/patologia , Antígeno de Macrófago 1
3.
Toxicol Ind Health ; 39(2): 115-126, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36650049

RESUMO

The fungicide mancozeb increases oxygen-free radicals in the central nervous system. As an antioxidant, L-carnitine protects DNA and cell membranes from damage caused by oxygen-free radicals. The present study investigated how L-carnitine affected the acoustic startle response (ASR) in rats exposed to mancozeb. In this experimental study, male Wistar rats were gavaged orally with mancozeb (500, 1000, and 2000 mg/kg), L-carnitine (100, 200, and 400 mg/kg), or L-carnitine (200 mg/kg) + mancozeb (500 mg/kg) three times in 1 week. In the sham group, saline (0.9%, 10 mL/kg) was gavaged at a volume equivalent to that of the drugs. The control group did not receive any treatment. The results showed that locomotor activity and the percentage of prepulse inhibition in the mancozeb groups decreased compared to the sham group while these parameters increased in the L-carnitine group (200 mg/kg) compared to sham rats. In conclusion, mancozeb may increase the risk factor for cognitive diseases such as schizophrenia in people exposed to it while pretreatment with L-carnitine can attenuate the toxic effect.


Assuntos
Maneb , Reflexo de Sobressalto , Ratos , Animais , Masculino , Reflexo de Sobressalto/fisiologia , Ratos Wistar , Carnitina/farmacologia , Maneb/toxicidade
4.
Environ Int ; 171: 107696, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563597

RESUMO

Maneb, a widely-used dithiocarbamate fungicide, remains in the environment and exerts adverse health effects. Epidemiological evidence shows that maneb exposure is associated with a higher risk of Parkinson's disease (PD), one of the most common neurodegenerative diseases. However, the molecular mechanisms underlying maneb-induced neurotoxicity remain unclear. Here we investigated the toxic effects and the underlying mechanisms of maneb on the degeneration of dopaminergic cells and α-synuclein in A53T transgenic mice. In SH-SY5Y cells, exposure to maneb reduces cell viability, triggers neuronal apoptosis, induces mitochondrial dysfunction, and generates reactive oxidative species (ROS) in a dose-dependent manner. Furthermore, Western blot analysis found that the mitochondrial apoptosis pathway (Bcl-2, Bax, cytochrome c, activated caspase-3) and the PKA/CREB signaling pathway (PKA, PDE10A, CREB, p-CREB) were changed by maneb both in vitro and in vivo. In addition, the activation of the mitochondrial apoptosis pathway induced by maneb was attenuated by activating PKA. Therefore, these results suggest that the PKA/CREB signaling pathway is involved in maneb-induced apoptosis. This study provides novel insights into maneb-induced neurotoxicity and the underlying mechanisms, which may serve as a guide for further toxicological assessment and standard application of maneb.


Assuntos
Fungicidas Industriais , Maneb , Neuroblastoma , Doença de Parkinson , Camundongos , Animais , Humanos , Fungicidas Industriais/toxicidade , Maneb/toxicidade , Apoptose , Diester Fosfórico Hidrolases/farmacologia
5.
Chemosphere ; 308(Pt 2): 136344, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36087732

RESUMO

Maneb is a typical dithiocarbamate fungicide that has been extensively used worldwide. Epidemiological evidence shows that exposure to maneb is an environmental risk factor for Parkinson's disease (PD). However, the mechanisms underlying maneb-induced neurotoxicity have yet to be elucidated. In this study, we exposed SH-SY5Y cells to maneb at environmentally relevant concentrations (0, 0.1, 5, 10 mg/L) and found that maneb dose-dependently decreased the cell viability. Furthermore, maneb (60 mg/kg) induced PD-like motor impairment in α-synuclein A53T transgenic mice. The results of tandem mass tag (TMT) proteomics and metabolomics studies of mouse brain and serum revealed significant changes in proteins and metabolites in the pathways involved in the neurotransmitter system. The omics results were verified by targeted metabolomics and Western blot analysis, which demonstrated that maneb induced disturbance of the PD-related pathways, including the phenylalanine and tryptophan metabolism pathways, dopaminergic synapse, synaptic vesicle cycle, mitochondrial dysfunction, and oxidative stress. In addition, the PD-like phenotype induced by maneb was attenuated by the asparagine endopeptidase (AEP) inhibitor compound #11 (CP11) (10 mg/kg), indicating that AEP may play a role in maneb-induced neurotoxicity. To the best of our knowledge, this is the first study to investigate the molecular mechanisms underlying maneb-induced PD-like phenotypes using multiomics analysis, which identified novel therapeutic targets for PD associated with pesticides and other environmental pollutants.


Assuntos
Poluentes Ambientais , Fungicidas Industriais , Maneb , Neuroblastoma , Síndromes Neurotóxicas , Doença de Parkinson , Praguicidas , Animais , Fungicidas Industriais/toxicidade , Humanos , Maneb/toxicidade , Metabolômica , Camundongos , Paraquat/toxicidade , Doença de Parkinson/etiologia , Praguicidas/toxicidade , Fenilalanina , Proteômica , Triptofano , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
6.
Ecotoxicol Environ Saf ; 243: 113972, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36029574

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder which mainly targets motor symptoms such as tremor, rigidity, bradykinesia and postural instability. The physiological changes occur due to dopamine depletion in basal ganglia region of the brain. PD aetiology is not yet elucidated clearly but genetic and environmental factors play a prominent role in disease occurrence. Despite of various environmental factors, pesticides exposure has been convicted as major candidate in PD pathogenesis. Among various pesticides 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been widely investigated in PD following with paraquat (PQ), maneb (MB), organochlorines (OC) and rotenone. Effect of these pesticides has been suggested to be involved in oxidative stress, alterations in dopamine transporters, mitochondrial dysfunction, α-synuclein (αSyn) fibrillation, and neuroinflammation in PD. The present review discusses the influence of pesticides in neurodegeneration and its related epidemiological studies conducted in PD. Furthermore, we have deliberated the common pesticides involved in PD and its associated genetic alterations and the probable mechanism of them behind PD pathogenesis. Hence, we conclude that pesticides play a prominent role in PD pathogenesis and advance research is needed to investigate the alterations in genetic and mechanistic aspects of PD.


Assuntos
Maneb , Síndromes Neurotóxicas , Doença de Parkinson , Praguicidas , Dopamina , Humanos , Maneb/toxicidade , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/patologia , Paraquat/toxicidade , Doença de Parkinson/genética , Doença de Parkinson/patologia , Praguicidas/toxicidade
7.
Environ Toxicol Pharmacol ; 92: 103849, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35292373

RESUMO

Mancozeb is a fungicide of the ethylene bisdithiocarbamate (EBDC) class complexed to the metals manganese and zinc. Nabam is the sodium salt of the EBDC backbone. The purpose of this study was to determine if these EBDC compounds alter essential metal homeostasis and glutathione status in Sprague-Dawley rats. Our findings indicate EBDCs caused accumulation of copper in kidneys, but not liver. EBDC compounds also increased glutathione reductase activity in liver, but not kidneys, whereas only mancozeb increased glutathione peroxidase activity in the liver. Mancozeb and nabam increased total glutathione in liver, but only mancozeb increased total glutathione in the kidney. Neither mancozeb nor nabam altered glutathione ratio in either liver or kidney compared to control. Our data suggest that the EBDC backbone of mancozeb, and not the zinc or manganese moieties, is responsible for changes in glutathione status and alteration of essential metal homeostasis in rat liver and kidney.


Assuntos
Etilenobis (ditiocarbamatos) , Fungicidas Industriais , Maneb , Zineb , Animais , Etilenobis (ditiocarbamatos)/toxicidade , Etilenos/farmacologia , Fungicidas Industriais/toxicidade , Glutationa , Rim , Fígado , Maneb/toxicidade , Manganês/farmacologia , Metais , Ratos , Ratos Sprague-Dawley , Zinco/farmacologia , Zineb/toxicidade
8.
Artigo em Inglês | MEDLINE | ID: mdl-35270318

RESUMO

BACKGROUND: In January 2021, the European Union ended the license of Mancozeb, the bestselling ethylenedithiocarbamate (EBDC) fungicide, because of some properties typical of human carcinogens. This decision contrasts the IARC classification of EBDC fungicides (Group 3, not classifiable as to human carcinogenicity). A systematic review of the scientific literature was conducted to explore the current evidence. METHODS: Human and experimental studies of cancer and exposure to EBDC fungicides (Mancozeb, Maneb, Zineb, and others) and ethylene thiourea (ETU), their major metabolite, published in English as of December 2021, were retrieved using PubMed, the list of references of the relevant reports, and grey literature. RESULTS: The epidemiological evidence of EBDC carcinogenicity is inadequate, with two studies each suggesting an association with melanoma and brain cancer and inconsistent findings for thyroid cancer. Experimental animal studies point at thyroid cancer in rats and liver cancer in mice, while multiple organs were affected following the long-term oral administration of Mancozeb. The mechanism of thyroid carcinogenesis in rats has also been shown to occur in humans. Genotoxic effects have been reported. CONCLUSIONS: The results of this systematic review suggest inadequate evidence for the carcinogenicity of EBDC fungicides from human studies and sufficient evidence from animal studies, with positive results on three out of ten key characteristics of carcinogens applying to humans as well. An IARC re-evaluation of the human carcinogenicity of EBDC fungicides is warranted.


Assuntos
Fungicidas Industriais , Maneb , Neoplasias da Glândula Tireoide , Animais , Carcinógenos/toxicidade , Fungicidas Industriais/toxicidade , Humanos , Maneb/toxicidade , Camundongos , Ratos
9.
Ecotoxicol Environ Saf ; 208: 111606, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396126

RESUMO

Mancozeb is a metal-containing ethylene bis-dithiocarbamate fungicide widely used in agriculture. Ethylene thiourea (ETU) is the primary metabolite of Mancozeb. Mancozeb has been associated with spontaneous abortions and abnormal menstruation in women. However, the effects of Mancozeb and ETU on embryo attachment remain unknown. The human blastocyst surrogate trophoblastic spheroids (JEG-3), endometrial epithelial surrogate adenocarcinoma cells (Ishikawa), or human primary endometrial epithelial cells (EECs) monolayer were used in the spheroid attachment models. Ishikawa and EECs were pretreated with different concentrations of Mancozeb or ETU for 48 h before the attachment assay. Gene expression profiles of Ishikawa cells were examined to understand how Mancozeb modulates endometrial receptivity with Microarray. The genes altered by Mancozeb were confirmed by qPCR and compared with the ETU treated groups. Mancozeb and ETU treatment inhibited cell viability at 10 µg/mL and 5000 µg/mL, respectively. At non-cytotoxic concentrations, Mancozeb at 3 µg/mL and ETU at 300 µg/mL reduced JEG-3 spheroid attachment onto Ishikawa cells. A similar result was observed with human primary endometrial epithelial cells. Mancozeb at 3 µg/mL modified the transcription of 158 genes by at least 1.5-fold in Microarray analysis. The expression of 10 differentially expressed genes were confirmed by qPCR. Furthermore, Mancozeb decreased spheroid attachment possibly through downregulating the expression of endometrial estrogen receptor ß and integrin ß3, but not mucin 1. These results were confirmed in both overexpression and knockdown experiments and co-culture assay. Mancozeb but not its metabolite ETU reduced spheroid attachment through modulating gene expression profile and decreasing estrogen receptor ß and integrin ß3 expression of endometrial epithelial cells.


Assuntos
Adesão Celular/efeitos dos fármacos , Endométrio/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Receptor beta de Estrogênio/metabolismo , Fungicidas Industriais/toxicidade , Integrina beta3/metabolismo , Maneb/toxicidade , Esferoides Celulares/efeitos dos fármacos , Zineb/toxicidade , Blastocisto/citologia , Blastocisto/efeitos dos fármacos , Blastocisto/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Regulação para Baixo , Endométrio/citologia , Endométrio/metabolismo , Células Epiteliais/metabolismo , Receptor beta de Estrogênio/genética , Feminino , Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Integrina beta3/genética , Gravidez , Esferoides Celulares/metabolismo
10.
Free Radic Biol Med ; 162: 65-76, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33279619

RESUMO

The dithiocarbamate fungicide maneb (MB) has attracted interest due to increasing concern of the negative health effects of pesticides, as well as its association with Parkinson's disease (PD). Our laboratory has previously reported distinct phenotypic changes of neuroblastoma cells exposed to acute, sub-toxic levels of MB, including decreased mitochondrial respiration, altered lactate dynamics, and metabolic stress. In this study, we aimed to further define the specific molecular mechanisms of MB toxicity through the comparison of several thiol-containing compounds and their effects on cellular energy metabolism and thiol redox nodes. Extracellular flux analyses and stable isotope labeled tracer metabolomics were employed to evaluate alterations in energy metabolism of SK-N-AS human neuroblastoma cells after acute exposure of an array of compounds, including dithiocarbamates (maneb, nabam, zineb) and other thiol-containing small molecules (glutathione, N-acetylcysteine). These studies revealed MB and its methylated form (MeDTC) as unique toxicants with significant alterations to mitochondrial respiration, proliferation, and glycolysis. We observed MB to significantly impact cellular thiol redox status by oxidizing cellular glutathione and altering the thiol redox status of peroxiredoxin 3 (Prx3, mitochondrial) after acute exposure. Redox Western blotting revealed a MB-specific modification of cellular Prx3, strengthening the argument that MB can preferentially target mitochondrial enzymes containing reactive cysteine thiols. Further, stable isotope tracer metabolomics confirmed our energetics assessments, and demonstrated that MB exposure results in acute derangement of central carbon metabolism. Specifically, we observed shunting of cellular glucose into the pentose-phosphate pathway and reduction of TCA intermediates derived from glucose and glutamine. Also, we report novel lactate utilization for TCA enrichment and glutathione synthesis after MB exposure. In summary, our results further confirm that MB exerts its toxic effects via thiol modification, and significantly transforms central carbon metabolism.


Assuntos
Maneb , Doença de Parkinson , Carbono , Humanos , Maneb/toxicidade , Oxirredução , Compostos de Sulfidrila
11.
Environ Toxicol Pharmacol ; 79: 103408, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32413496

RESUMO

The interference in endocrine signaling in particular of hypothyroid-pituitary-thyroid axis during embryonic/neonatal development increases the risk of long-lasting immune dysfunctioning. Anticipating that, environmentally realistic exposure of established thyroid disrupting pesticides of dithiocarbamate group mancozeb and phenylpyrazole fipronil was given to mice as individual and as mixtures (MIX-I/MIX-II) during the critical initiation phase of the immune response from postnatal day (PND) 31 till PND 60 (maturation phase). The direct exposure effect was assessed at PND 61 and the persistent effect was assessed at PND 91. Pronounced oxidative stress/genotoxicity in lymphoid organs at even low dose mixture exposure of pesticides (MIX-I/ MIX-II) continued to suppress the immune system till adulthood; might be due to the synergistic/additive action. The oxidative stress/genotoxicity effect was prevented on T4 supplementation to inhibit immunotoxicity as T4 is an immune enhancer and antioxidants. Oxidative stress/genotoxicity is suggested as a mechanism of thyroid disruption mediated immune suppression.


Assuntos
Maneb/toxicidade , Praguicidas/toxicidade , Pirazóis/toxicidade , Zineb/toxicidade , Animais , Dano ao DNA , Feminino , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Baço/efeitos dos fármacos , Timo/efeitos dos fármacos , Glândula Tireoide/efeitos dos fármacos
12.
Neurotox Res ; 37(1): 210-226, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31422567

RESUMO

Exposure to environmental contaminants represents an important etiological factor in sporadic Parkinson's disease (PD). It has been reported that PD could arise from events that occur early in development and that lead to delayed adverse consequences in the nigrostriatal dopaminergic system at adult life. We investigated the occurrence of late nigrostriatal dopaminergic neurotoxicity induced by exposures to the pesticides paraquat (PQ) and maneb (MB) during the early postnatal period in mice, as well as whether the exposure to pesticides during development could enhance mice vulnerability to subsequent challenges. Male Swiss mice were exposed to a combination of 0.3 mg/kg PQ and 1.0 mg/kg MB (PQ + MB) from postnatal (PN) day 5 to 19. PN exposure to pesticides neither induced mortally nor modified motor-related parameters. However, PN pesticides exposure decreased the number of tyrosine hydroxylase (TH)- and dopamine transporter (DAT)-positive neurons in the substantia nigra pars compacta (SNpc), as well as reduced TH and DAT immunoreactivity in the striatum. A parallel group of animals developmentally exposed to the pesticides was re-challenged at 3 months of age with 10 mg/kg PQ plus 30 mg/kg MB (twice a week, 6 weeks). Mice exposed to pesticides at both periods (PN + adulthood) presented motor deficits and reductions in the number of TH- and DAT-positive neurons in the SNpc. These findings indicate that the exposure to PQ + MB during the early PN period can cause neurotoxicity in the mouse nigrostriatal dopaminergic system, rendering it more susceptible to a subsequent adult re-challenge with the same pesticides.


Assuntos
Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Maneb/toxicidade , Paraquat/toxicidade , Fatores Etários , Animais , Contagem de Células , Corpo Estriado/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Masculino , Camundongos , Destreza Motora/efeitos dos fármacos , Parte Compacta da Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
13.
Life Sci ; 240: 117078, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31759041

RESUMO

AIM: The cross regulation between neuroendocrine system, particularly Hypothalamus-Pituitary-Thyroid (HPT) axis and immune system during embryonic/early neonatal developmental stages shapes the functional attribute of immune response throughout the life. Thus, disruption of immune system was anticipated on exposure to thyroid disrupting pesticides (TDPs) mancozeb (MCZ) and fipronil (FPN) during critical windows of early postnatal days (PND) development. MAIN METHODS: Mice were exposed to MCZ and FPN as individual (0.5% LD 50 each) and as mixtures (0.25% and 0.5% LD 50 each) from PND 31 (initiation phase of immune response) till PND 60 (Maturation phase). Thyroxine (T4) supplementation was given from PND 51 to PND 60. Assessment was done at PND 61 as well as at PND 91 (adults). KEY FINDINGS: Plasma level of thyroid hormones (T3 and T4) was reduced but pituitary hormone (TSH) increased till adulthood on exposure to mixture pesticides but not on individual exposure. Mixture pesticides also increased body weight gain and reduced survival rate in adults. Exposure of individual pesticides exert immunotoxicity but more pronounced immune suppression was observed in mixture pesticides exposed group as reflected in reduced relative weight and cellularity in spleen and thymus, reduced in vitro mitogenic (Con A/LPS) response of splenocytes and thymocytes (reduced proliferative index and increased apoptotic/necrotic death). T4 supplementation ameliorated thyroid disruptive and immunotoxic effect of pesticides. SIGNIFICANCE: The additive/synergistic toxicity as well as hypothyroidism induced by mixture pesticides has produced pronounced immune suppression that reflected till adulthood. Supplementation of T4 prevented thyroid axis disruption mediated immunosuppression.


Assuntos
Disruptores Endócrinos/toxicidade , Fungicidas Industriais/toxicidade , Sistema Imunitário/efeitos dos fármacos , Inseticidas/toxicidade , Maneb/toxicidade , Praguicidas/antagonistas & inibidores , Praguicidas/toxicidade , Pirazóis/toxicidade , Tiroxina/metabolismo , Tiroxina/uso terapêutico , Zineb/toxicidade , Animais , Peso Corporal , Feminino , Masculino , Camundongos , Tamanho do Órgão/efeitos dos fármacos , Baço/citologia , Baço/efeitos dos fármacos , Baço/imunologia , Análise de Sobrevida , Timo/citologia , Timo/efeitos dos fármacos , Timo/imunologia
14.
Ecotoxicol Environ Saf ; 182: 109420, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31299472

RESUMO

Mancozeb (MZ), chlorothalonil (CT), and thiophanate methyl (TM) are pesticides commonly used in agriculture due to their efficacy, low acute toxicity to mammals, and short environmental persistence. Although the toxic effects of these pesticides have been previously reported, studies regarding their influence on the immune system are limited. As such, this study focused on the immunomodulatory effect of MZ, CT, and TM pesticides on macrophage cells. RAW 264.7 cells were exposed to a range of concentrations (0.1-100 µg/mL) of these pesticides. CT exposure promoted an increase in reactive oxygen species (ROS) and nitric oxide (NO) levels. The MTT and ds-DNA assay results demonstrated that MZ, CT, and TM exposure induced macrophage proliferation. Moreover, MZ, CT, and TM promoted cell cycle arrest at S phase, strongly suggesting macrophage proliferation. The levels of pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α, and IFN-γ) and caspases (caspase 1, 3, and 8) in macrophages exposed to MZ, CT, and TM pesticides increased, whereas the anti-inflammatory cytokine levels decreased. These results suggest that MZ, CT, and TM exert an immunomodulatory effect on the immune system, inducing macrophage activation and enhancing the inflammatory response.


Assuntos
Praguicidas/toxicidade , Animais , Citocinas/metabolismo , Imunomodulação , Interleucina-1beta/metabolismo , Macrófagos/efeitos dos fármacos , Maneb/toxicidade , Óxido Nítrico/metabolismo , Nitrilas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Tiofanato/toxicidade , Testes de Toxicidade , Fator de Necrose Tumoral alfa/metabolismo , Zineb/toxicidade
15.
Regul Toxicol Pharmacol ; 105: 86-98, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31014950

RESUMO

The study aims to evaluate the potential reproductive toxicity induced by mancozeb fungicide in male rabbits and to examine the ameliorative effect of glutathione (GSH), a non-enzymatic antioxidant, against mancozeb reproductive toxicity. Mancozeb is a member of the dithiocarbamates group currently in use in the management of fungal diseases of plants. To achieve these aims, mature male White New-Zealand rabbits of 4-5 months old were randomly assigned to four groups of 9 animals each: control, mancozeb only, mancozeb and GSH, and GSH only. This study discovered a significant reduction in serum FSH, LH, testosterone and testicular LDH, ACP, and ALP levels in the groups of mancozeb-treated rabbits compared with control. The mancozeb-treated groups also showed significant losses in sperm viability, along with a significant increase in the number of abnormal sperms. Finally, an upregulation in steroidogenic 3ß-HSD enzyme activity was noted in mancozeb-treated rabbits. Histopathological inspection of the testicles established disruption of the germinal epithelium with vacuolization of Leydig cells and reduced spermatogenic cells. GSH co-administration increased serum concentrations of FSH, LH, testosterone, and levels of the testicular enzymes: LDH, ACP, and ALP. Improved steroidogenesis was indicated in this group by a significant improvement in the testicular 3ß-HSD enzyme, by a significant increase in sperm viability, and by a significant decrease in the number of abnormal sperms. The findings of this study suggest that mancozeb exposure has anti-spermatogenic and anti-steroidogenic adverse effects in rabbits and administration of GSH may alleviate the reproductive toxicity.


Assuntos
Antioxidantes/farmacologia , Fungicidas Industriais/toxicidade , Glutationa/farmacologia , Maneb/toxicidade , Zineb/toxicidade , Animais , Fertilidade/efeitos dos fármacos , Hormônio Foliculoestimulante/sangue , Hormônio Luteinizante/sangue , Masculino , Coelhos , Distribuição Aleatória , Reprodução/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Espermatozoides/anormalidades , Espermatozoides/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/patologia , Testosterona/sangue
16.
Hum Exp Toxicol ; 38(6): 619-631, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30782018

RESUMO

Vanillin, a widely used flavoring agent, has antimutagenic and antioxidant properties. The current study was performed to evaluate its beneficial role against hepatotoxicity induced by maneb, a dithiocarbamate fungicide. Mice were divided into four groups of six each: group 1, serving as negative controls which received by intraperitoneal way only distilled water, a solvent of maneb; group 2, received daily, by intraperitoneal way, maneb (30 mg kg-1 body weight (BW)); group 3, received maneb at the same dose of group 2 and 50 mg kg-1 BW of vanillin by intraperitoneal way; and group 4, serving as positive controls, received daily only vanillin. After 10 days of treatment, mice of all groups were killed. Our results showed that vanillin significantly reduced the elevated hepatic levels of malondialdehyde, hydrogen peroxide, and advanced oxidation protein product and attenuated DNA fragmentation induced by maneb. In addition, vanillin modulated the alterations of antioxidant status: enzymatic (superoxide dismutase, catalase, and glutathione peroxidase) and nonenzymatic (reduced glutathione, nonprotein thiol, and vitamin C) antioxidants in the liver of maneb-treated mice. This natural compound was also able to ameliorate plasma biochemical parameters (aspartate aminotransferase, alanine aminotransferase, gamma glutamyl transpeptidase, alkaline phosphatase, total bilirubin, and total protein). The protective effect of vanillin was further evident through the histopathological changes produced by maneb in the liver tissue. Thus, we concluded that vanillin might be beneficial against maneb-induced hepatic damage in mice.


Assuntos
Benzaldeídos/farmacologia , Aromatizantes/farmacologia , Fungicidas Industriais/toxicidade , Maneb/toxicidade , Substâncias Protetoras/farmacologia , Animais , Dano ao DNA/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos
17.
Toxicology ; 417: 64-73, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30797899

RESUMO

The activation of NADPH oxidase contributes to dopaminergic neurodegeneration induced by paraquat and maneb, two concurrently used pesticides in agriculture. However, the mechanisms remain unclear. Ferroptosis, a recently recognized form of regulated cell death, has been implicated in the pathogenesis of multiple neurodegenerative diseases. This study is designed to investigate whether ferroptosis is involved in NADPH oxidase-regulated dopaminergic neurotoxicity. In vitro study showed that paraquat and maneb exposure induced ferroptosis in SHSY5Y dopaminergic cells, which was associated with activation of NADPH oxidase. Inhibition of NADPH oxidase by apocynin or diphenyleneiodonium (DPI), two widely used NADPH oxidase inhibitors mitigated paraquat and maneb-induced ferroptotic cell death. Consistently, stimulating activation of NADPH oxidase by phorbol myristate acetate (PMA) or supplementation of H2O2 exacerbated ferroptosis in paraquat and maneb-treated SHSY5Y cells. Mechanistic inquiry revealed that NADPH oxidase activation elicited lipid peroxidation, a main driving force for ferroptosis, since both apocynin and DPI greatly reduced MDA contents and simultaneously recovered levels of glutathione and glutathione peroxidase 4 (GPX4) in paraquat and maneb-treated SHSY5Y cells. The contribution of NADPH oxidase on ferroptosis of dopaminergic neurons was further verified in vivo by showing reduced iron content, lipid peroxidation, neuroinflammation and dopaminergic neurodegeneration, which are all involved in ferroptosis, in combined apocynin and paraquat and maneb-treated mice compared with paraquat and maneb alone group. Altogether, our findings showed that NADPH oxidase contributed to paraquat and maneb-induced dopaminergic neurodegeneration through ferroptosis, providing a novel mechanism for pesticide-induced dopaminergic neurotoxicity.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Maneb/toxicidade , NADPH Oxidases/fisiologia , Degeneração Neural/induzido quimicamente , Paraquat/toxicidade , Animais , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/enzimologia , Ferroptose/fisiologia , Fungicidas Industriais/toxicidade , Herbicidas/toxicidade , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/enzimologia , Distribuição Aleatória
18.
Toxicol Ind Health ; 34(11): 798-811, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30037311

RESUMO

Mancozeb (MZB) is one of the fungicides used in pest control programs that might affect human health including reproductive system. The aim of this study was to demonstrate the mechanisms through which MZB induces testicular tissue damage and the probable protective effect of N-acetylcysteine (NAC), a modified amino acid, with antioxidant property, against MZB toxicity in an animal model. Male albino mice ( n = 8) were exposed to different doses of MZB (250 and 500 mg/kg/day) by oral gavage without or with NAC (200 mg/kg, twice/week) for 40 days. Sub-chronic MZB dose-dependently decreased sperm motility and count. Exposure to MZB increased lipid peroxidation and protein carbonyl, while it reduced antioxidant enzymes activities, total antioxidant capacity, and glutathione content. The histopathological examination clearly showed deleterious changes in the testicular structure. At the molecular levels, the results of quantitative real time-poly chain reaction (qRT-PCR) showed that MZB upregulated oxidative stress markers inducible nitric oxide synthase (iNOS) and NADPH oxidase 4 (NOX4) and downregulated expression of the glutathione peroxidase 1 (Gpx1) gene as one of the most important antioxidant enzymes. MZB also induced apoptosis dose-dependently in the testes as determined by the terminal dUTP nick-end labeling assay and immunoblotting. NAC administration decreased the mRNA levels of both iNOS and NOX4 with a concomitant increase in Gpx1 expression. It also significantly decreased MZB-induced oxidative stress and apoptosis. Collectively, the present study showed MZB-induced oxidative damage in testes leading to apoptosis. It revealed that antioxidants such as NAC can mitigate oxidant injury induced by the dithiocarbamate pesticides in the reproductive system.


Assuntos
Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Maneb/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Testículo/efeitos dos fármacos , Zineb/toxicidade , Animais , Masculino , Camundongos , Espermatogênese/efeitos dos fármacos , Testículo/patologia , Testículo/fisiopatologia
19.
Toxicol Sci ; 165(1): 61-73, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29767788

RESUMO

The pesticides paraquat (PQ) and maneb (MB) have been described as environmental risk factors for Parkinson's disease (PD), with mechanisms associated with mitochondrial dysfunction and reactive oxygen species generation. A combined exposure of PQ and MB in murine models and neuroblastoma cells has been utilized to further advance understanding of the PD phenotype. MB acts as a redox modulator through alkylation of protein thiols and has been previously characterized to inhibit complex III of the electron transport chain and uncouple the mitochondrial proton gradient. The purpose of this study was to analyze ATP-linked respiration and glycolysis in human neuroblastoma cells utilizing the Seahorse extracellular flux platform. Employing an acute, subtoxic exposure of MB, this investigation revealed a MB-mediated decrease in mitochondrial oxygen consumption at baseline and maximal respiration, with inhibition of ATP synthesis and coupling efficiency. Additionally, MB-treated cells showed an increase in nonmitochondrial respiration and proton leak. Further investigation into mitochondrial fuel flex revealed an elimination of fuel flexibility across all 3 major substrates, with a decrease in pyruvate capacity as well as glutamine dependency. Analyses of glycolytic function showed a substantial decrease in glycolytic acidification caused by lactic acid export. This inhibition of glycolytic parameters was also observed after titrating the MB dose as low as 6 µM, and appears to be dependent on the dithiocarbamate functional group, with manganese possibly potentiating the effect. Further studies into cellular ATP and NAD levels revealed a drastic decrease in cells treated with MB. In summary, MB significantly impacted both aerobic and anaerobic energy production; therefore, further characterization of MB's effect on cellular energetics may provide insight into the specificity of PD to dopaminergic neurons.


Assuntos
Poluentes Ambientais/toxicidade , Glicólise/efeitos dos fármacos , Maneb/toxicidade , Mitocôndrias/efeitos dos fármacos , Praguicidas/toxicidade , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Mitocôndrias/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Consumo de Oxigênio/efeitos dos fármacos
20.
Neurotoxicol Teratol ; 68: 66-71, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29807111

RESUMO

Mancozeb (MZ), an organic-metal fungicide used predominantly on vegetables and fruits, has been linked to neurodegeneration and behavioral disruptions in a variety of organisms, including humans. Both γ-aminobutyric acid and dopamine neurons appear to be more vulnerable to MZ exposure than other neuronal populations. Based on these observations, we hypothesized that MZ may be differentially transported into these cells through their presynaptic neurotransmitter transporters. To test this, we pretreated Caenorhabditis elegans with transporter antagonists followed by exposure to various concentrations of MZ. Potential neuroprotection was monitored via green fluorescence associated with various neuron populations in transgenic worm strains. Neurodegeneration associated with subacute MZ treatment (30 min) was not altered by transporter antagonist pretreatment. On the other hand, pretreatment with a dopamine transporter antagonist (GBR12909) appeared to protect dopaminergic neurons from chronic (24 h) MZ treatment. These results are consistent with other reports that dopamine transporter levels or activity may modulate toxicity for neurotoxicants.


Assuntos
Maneb/toxicidade , Degeneração Neural/prevenção & controle , Piperazinas/farmacologia , Zineb/toxicidade , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Clomipramina/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Fungicidas Industriais/toxicidade , Inibidores da Captação de GABA/farmacologia , Maneb/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Ácidos Nipecóticos/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Zineb/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA